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1. Prédicats, quantificateurs et formules
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Prédicats

Définition
Un prédicat est une proposition dont la véracité dépend d’une ou
plusieurs variables

Exemple

▶ “5x2 − 7 = 0” est vrai pour certaines valeurs : x = ±
√

7
5

▶ “x2 ≥ 0” est vrai pour toute valeur de x ∈ R

▶ “P(x , y)” est un prédicat abstrait dont la valeur dépend de x
et y
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Quantificateurs

Nous avons besoin de quantifier les valeurs des variables pour
lesquelles un prédicat est vrai

Exemple
“si vous pouvez résoudre n’importe quel exercice de TD, alors
vous aurez 20/20”

▶ “si vous pouvez résoudre au moins un exercice . . .” ?

▶ “si vous pouvez résoudre tous les exercices . . .” ?

Deux quantificateurs : “il existe” (∃) et “pour tout” (∀)

Exemple
▶ “∀x ∈ R, x2 ≥ 0” est une formule vraie

▶ “∃x ∈ R, 5x2 − 7 = 0” est vraie pour x =
√

7
5 notamment
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Formules
On considère des prédicats :
▶ usuels x2 ≥ 0, y ∈ R, 5y − 3x = 6 . . .
▶ abstraits P(x), Q(x , y), . . .

Définition
Les formules de la logique des prédicats sont définies par :
▶ tout prédicat est une formule

▶ la combinaison de deux formules F et G est une formule :
¬F , F ∧ G , F ∨ G , F =⇒ G et F ⇐⇒ G

▶ la quantification d’une variable dans une formule F est une
formule : ∀x ∈ D,F et ∃x ∈ D,F pour un ensemble D

Exemple
∃p, q ∈ Premiers,∀n ∈ Pairs, (n > 2 =⇒ n = p + q)
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Combiner les quantificateurs

Il est souvent nécessaire de combiner plusieurs quantificateurs

Exemple (Conjecture de Goldbach)
“tout entier pair n > 2 est la somme de deux nombres premiers”

∀n ∈ Pairs, (n > 2 =⇒ ∃p, q ∈ Premiers, n = p + q)

L’ordre des quantificateurs est significatif

Exemple
La formule ci-dessous est-elle équivalente à la formule ci-dessus ?

∃p, q ∈ Premiers,∀n ∈ Pairs, (n > 2 =⇒ n = p + q)
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Ordre des quantificateurs

x

y

∀x ∀y

x

y

∃x ∀y

x

y

∀x ∃y

x

y

∃x ∃y
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Propriétés des quantificateurs

Priorité : de la plus haute (gauche) à la plus basse (droite)

∀/∃ ¬ ∧ ∨ =⇒ ⇐⇒

Exemple
Parenthéser la formule en respectant la priorité des connecteurs :

∀n ∈ Pairs, n > 2 =⇒ ∃p, q ∈ Premiers, n = p + q

Comparer avec la formule du #6.

Domaine vide :

▶ “∃x ∈ ∅,F ” est fausse, peu importe F

▶ “∀x ∈ ∅,F ” est vraie, indépendamment de F
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Modéliser en logique des prédicats

Exemple
Soit :
▶ P un ensemble de personnes
▶ et parent(x , y) un prédicat vrai si x est le parent de y

Exprimer les prédicats suivants par des formules de logique :

▶ “x est le frère ou la sœur de y ”

▶ “x est un grand-parent de y ”

▶ “x est une cousine ou un cousin de y ”

▶ “x n’a pas d’enfant”
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2. Valeur de vérité et équivalence logique
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Variable libre/liée

Définition
Une occurrence d’une variable est liée si elle est sous la portée d’un
quantificateur. Elle est libre sinon.

Exemple

“x est une tante ou un oncle de y ”

∃z ∈ Personnes, (parent(z , y) ∧ fratrie(z , x))

∃z ∈ Personnes

∧

parent(z, y) fratrie(z, x)

▶ La véracité de la formule dépend de la valeur des variables
libres : oncle_tante(x , y)

▶ Une formule est close si toutes ses variables sont liées
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Modèle
Définition
Un modèle (ou interprétation) définit :
▶ le domaine des variables (peut être infini)
▶ la valeur de chaque variable libre
▶ une relation pour chaque prédicat
▶ une fonction pour chaque symbole de fonction

Exemple
“x est une tante ou un oncle de y ”

∃z ∈ Personnes, (parent(z , y) ∧ fratrie(z , x))

▶ Personnes = {A,B,C ,D}
▶ y 7→ D et x 7→ C

▶ parent = {(A,B), (A,C ), (B,D)}
▶ fratrie = {(B,C )} (défini depuis parent, cf. #9)
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Valeur de vérité d’une formule

Définition
La valeur d’une formule dans un modèle M est définie par :
▶ “∃x ∈ D,F ” est vraie si F est vraie dans le modèle M[x 7→ v ]

pour au moins une valeur v ∈ D

▶ “∀x ∈ D,F ” est vraie si F est vrai dans le modèle M[x 7→ v ]
pour toute valeur v ∈ D

▶ Un prédicat “P(x1, . . . , xn)” est vrai si (M(x1), . . . ,M(xn)) est
dans la relation M(P)

▶ ¬F , F ∧ G , F ∨ G , F =⇒ G et F ⇐⇒ G comme dans le
cas propositionnel

Exemple
La formule ci-dessous est vraie dans le modèle du #12.

∃z ∈ Personnes, (parent(z , y) ∧ fratrie(z , x))
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Équivalence logique

Définition
Deux formules sont logiquement équivalentes si elles ont la
même valeur pour tout modèle

Négation :
▶ “¬(∀x ,F )” est équivalente à “∃x ,¬F ”
▶ “¬(∃x ,F )” est équivalente à “∀x ,¬F ”

Commutativité :
▶ “∀x , ∀y , F ” est équivalent à “∀y , ∀x , F ”
▶ “∃x , ∃y , F ” est équivalent à “∃y , ∃x , F ”

Distributivité :
▶ ∃x , (F ∧ G ) implique (∃x ,F ) ∧ (∃x ,G )

▶ ∀x(F ∧ G ) est équivalente à (∀x ,F ) ∧ (∀x ,G )

▶ ∃x , (F ∨ G ) est équivalente à (∃x ,F ) ∨ (∃x ,G )

▶ (∀x ,F ) ∨ (∀x ,G ) implique ∀x , (F ∨ G )

14/25



Forme normale négative

Définition
Une formule de la logique des prédicats est en forme normale
négative (FNN) si elle n’utilise que ∧, ∨, ∃, ∀ et ¬ sur les litéraux.

Exemple
FNN ou pas ?

▶ P(x) =⇒ ¬P(a)

▶ ∀x ,P(x) ∨ (¬Q(a) ∧ P(b))

▶ ∃x ,¬(∀y ,P(x , y) =⇒ Q(x) ∨ R(y , x))

Théorème
Toute formule de la logique prédicats est logiquement équivalente à
une formule en forme normale négative

15/25



3. Satisfiabilité et validité
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Satisfiabilité

Définition
Une formule est satisfiable si elle est vraie pour (au moins) un
modèle

Exemple
“x est une tante ou un oncle de y ”

∃z ∈ Personnes, (parent(z , y) ∧ fratrie(z , x))

est satisfiable, puisqu’elle est vraie pour le modèle du #12

Théorème
La satisfiabilité en logique des prédicat est indécidable.
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Validité

Définition
Une formule est valide si elle est vraie pour tout modèle.

Exemple
“x est une tante ou un oncle de y ”

∃z ∈ Personnes, (parent(z , y) ∧ fratrie(z , x))

n’est pas valide, car fausse pour tout modèle tq parent = ∅

NB : F est valide si et seulement si ¬F est insatisfiable

Théorème
La validité en logique des prédicats est indécidable.
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4. Preuve de validité par tableau
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Tableau sémantique
Principe : pour une formule F
▶ construire un arbre (tableau) A sont les nœuds sont des

formules, et de racine F

▶ tel que F est logiquement équivalente à la formule
(B1 ∨ . . . ∨ Bk) où Bi est la conjonction (n1 ∧ . . . ∧ nl) des
formules de la i ème branche de A

Exemple

a ∧ c ∧ (¬a ∨ b)

a ∧ c ∧ (¬a ∨ b)

a ∧ c

¬a ∨ b

a

c

¬a b

a∧ c ∧ (¬a∨b) ≡ ((a ∧ c) ∧ (¬a ∨ b) ∧ a ∧ c ∧ ¬a)∨ ((a ∧ c) ∧ (¬a ∨ b) ∧ a ∧ c ∧ b)
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Règles de construction pour ∧ et ∨
Construction de l’arbre A pour une formule F en FNN et close :
▶ la racine de A est F
▶ ajouter à une feuille n de A le sous-arbre produit par l’une

des formules de la branche de n (cf. ci-dessous)
▶ arc de clôture entre deux littéraux opposés sur une branche

Ajouter sous la feuille n :

pour G ∧ H pour G ∨ H

G ∧ H

n

G

H

G ∨ H

n

G H

Exemple
a ∧ c ∧ (¬a ∨ b)

a ∧ c

¬a ∨ b

a

c

¬a b
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Tableaux clos

▶ Une branche est close si elle contient un litéral et sa
négation

▶ Un tableau est clos si toutes ses branches sont closes

Exemple
a ∧ c ∧ (¬a ∨ b)

a ∧ c

¬a ∨ b

a

c

¬a b

(a ∨ ¬b) ∧ b ∧ ¬a

(a ∨ ¬b) ∧ b

¬a

a ∨ ¬b

b

a ¬b
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Règles de construction pour ∃ et ∀

Rappel : formule en FNN et close

Ajouter sous une feuille n :

pour ∃x ,G pour ∀x ,G
∃x ,G

n

G [a/x ]

∀x ,G

n

G [t/x ]

▶ a est une nouvelle constante
▶ t est un terme constant
▶ G [e/x ] subtitue e à toutes les

occurrences libres de x dans G

(¬P(a) ∨ ¬P(b)) ∧ ∀x ,P(x)

¬P(a) ∨ ¬P(b)

∀x ,P(x)

¬P(a)

P(a)

¬P(b)

P(b)

Remarque : la règle ∀ peut être appliquée plusieurs fois
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Exemple de tableau avec ∃ et ∀

pour G ∧ H pour G ∨ H

G ∧ H

n

G

H

G ∨ H

n

G H

pour ∃x ,G pour ∀x ,G
∃x ,G

n

G [a/x ]

∀x ,G

n

G [t/x ]

∀x ,P(x) ∧ ∃y , (¬P(y) ∨ ¬P(f (y)))

∀x ,P(x)

∃y , (¬P(y) ∨ ¬P(f (y)))

¬P(a) ∨ ¬P(f (a))

¬P(a)

P(a)

¬P(f (a))

P(f (a))
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Preuve de validité par tableau

Théorème
Une formule F est insatisfiable si et seulement si elle admet un
tableau clos

Si F admet un tableau clos :
▶ chaque branche Bi correspond à une formule insatisfiable

(. . . ∧ l ∧ . . . ∧ ¬l ∧ . . .)

▶ F est logiquement équivalente à (B1 ∨ . . . ∨ Bk) qui est donc
insatisfiable

Attention : un tableau non-clos ne prouve pas la satisfiabilité

Corollaire
F est valide si et seulement si ¬F admet un tableau clos

NB : on peut toujours clore une formule F en quantifiant ∀ ses
variables libres, tout en préservant sa validité
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