IF228 - Calculabilité et Complexité

Cours #3 : indécidabilité

Frédéric Herbreteau frederic.herbreteau@bordeaux-inp.fr (d'après les supports de Corentin Travers)

8 janvier 2025

Expressivité des machines de Turing

Existe-t-il des fonctions non calculables?

• Automates finis : $a^*b^* \checkmark \qquad \{a^nb^n \mid n \in \mathbb{N}\} \times$

Expressivité des machines de Turing

Existe-t-il des fonctions non calculables?

• Automates finis : $a^*b^* \checkmark \qquad \{a^nb^n \mid n \in \mathbb{N}\} \times$

• Automates à pile : $\{a^nb^n \mid n \in \mathbb{N}\} \checkmark \{a^nb^nc^n \mid n \in \mathbb{N}\} \times$

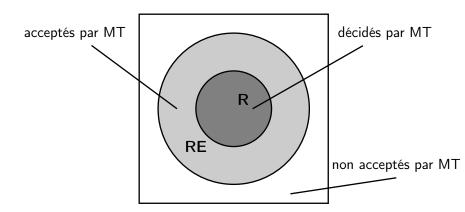
Expressivité des machines de Turing

Existe-t-il des fonctions non calculables?

• Automates finis : $a^*b^* \checkmark \qquad \{a^nb^n \mid n \in \mathbb{N}\} \times$

- Automates à pile : $\{a^nb^n \mid n \in \mathbb{N}\} \checkmark \{a^nb^nc^n \mid n \in \mathbb{N}\} \times$
- Machines de Turing : $\{a^nb^nc^n \mid n \in \mathbb{N}\}\$???

Classification des langages



Plan:

- **1** Il existe un langage $L_{\overline{d}}$ ∉ RE
- 2 Il existe un langage $L_u \in RE$ mais $L_u \notin R$

Un langage qui n'est pas RE

Théorème

Il existe un langage $L_{\overline{d}}$ qui n'est accepté par aucune machine de Turing

$$L_{\overline{d}} = \{\alpha \in \{0,1\}^* \mid M_{\alpha} \text{ n'accepte pas } \alpha\}$$

Rappel : M_{α} est la machine de Turing encodée par α

α	ϵ	0	1	00	01	10	
ϵ							
0							
1							
00							
01							
10							• • •
:	:	:	:	:	:	:	٠

	α	ϵ	0	1	00	01	10	
$\langle M_{\epsilon} \rangle =$	ϵ							
$\overline{\langle M_0 \rangle} =$	0							
$\overline{\langle M_1 \rangle} =$	1							
$\langle M_{00} \rangle =$	00							
$\langle M_{01} \rangle =$	01							
$\langle M_{10} \rangle =$	10							
	÷	:	:	:	:	÷	÷	٠

	α	ϵ	0	1	00	01	10	
$\langle M_{\epsilon} \rangle =$	ϵ	0	0	1	0	1	1	• • •
$\langle M_0 \rangle =$	0							
$\langle M_1 \rangle =$	1							
$\langle M_{00} \rangle =$	00							• • •
$\langle M_{01} \rangle =$	01							• • •
$\langle M_{10} \rangle =$	10							• • •
	i	:	:	:	:	i	i	٠

• M_{ϵ} accepte α (1) ou non (0)?

	α	ϵ	0	1	00	01	10	
$\langle M_{\epsilon} \rangle =$	ϵ	0	0	1	0	1	1	• • •
$\langle M_0 \rangle =$	0	1	1	0	0	1	0	
$\langle M_1 \rangle =$	1	1	0	0	0	0	1	
$\langle M_{00} \rangle =$	00	1	1	1	1	0	1	• • •
$\langle M_{01} \rangle =$	01	0	0	0	0	0	0	
$\langle M_{10} \rangle =$	10	0	1	1	1	1	0	• • •
	÷	:	:	:	:	:	:	

• M_{ϵ} accepte α (1) ou non (0)?

	α	ϵ	0	1	00	01	10	
$\langle M_{\epsilon} \rangle =$	ϵ	0	0	1	0	1	1	• • •
$\langle M_0 \rangle =$	0	1	1	0	0	1	0	
$\langle M_1 \rangle =$	1	1	0	0	0	0	1	• • • •
$\langle M_{00} \rangle =$	00	1	1	1	1	0	1	• • •
$\langle M_{01} \rangle =$	01	0	0	0	0	0	0	• • •
$\langle M_{10} \rangle =$	10	0	1	1	1	1	0	• • •
	÷	:	:	:	:	:	i	٠

- M_{ϵ} accepte α (1) ou non (0)?
- Diagonale : M_{α} accepte sa propre description α ?

	α	ϵ	0	1	00	01	10	
$\langle M_{\epsilon} \rangle =$	ϵ	0	0	1	0	1	1	• • •
$\langle M_0 \rangle =$	0	1	1	0	0	1	0	
$\langle M_1 \rangle =$	1	1	0	0	0	0	1	
$\langle M_{00} \rangle =$	00	1	1	1	1	0	1	• • •
$\langle M_{01} \rangle =$	01	0	0	0	0	0	0	
$\langle M_{10} \rangle =$	10	0	1	1	1	1	0	• • •
	:	:	:	:	:	:	:	٠

- M_{ϵ} accepte α (1) ou non (0)?
- Diagonale : M_{α} accepte sa propre description α ?
- Complément : $L_{\overline{d}} = \{ \alpha \mid M_{\alpha} \text{ n'accepte pas } \alpha \}$

Théorème

Le langage $L_{\overline{d}} = \{ \alpha \mid M_{\alpha} \text{ n'accepte pas } \alpha \}$ n'est pas récursivement énumérable

Théorème

Le langage $L_{\overline{d}} = \{ \alpha \mid M_{\alpha} \text{ n'accepte pas } \alpha \}$ n'est pas récursivement énumérable

Preuve

Supposons $L_{\overline{d}}$ accepté par MT $M_{\overline{d}}$:

Théorème

Le langage $L_{\overline{d}} = \{ \alpha \mid M_{\alpha} \text{ n'accepte pas } \alpha \}$ n'est pas récursivement énumérable

Preuve

Supposons $L_{\overline{d}}$ accepté par MT $M_{\overline{d}}$:

	α	ϵ	 w	
$\overline{\langle M_{\epsilon} \rangle} =$	ϵ	0	 1	• • •
	:	:	 :	
$\overline{\langle M_{\overline{d}} \rangle} =$	W	0	 ?	• • •
	:	:	 :	• • •

Théorème

Le langage $L_{\overline{d}} = \{ \alpha \mid M_{\alpha} \text{ n'accepte pas } \alpha \}$ n'est pas récursivement énumérable

Preuve

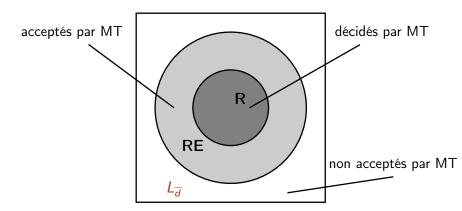
Supposons $L_{\overline{d}}$ accepté par MT $M_{\overline{d}}$:

	α	ϵ	 w	
$\overline{\langle M_{\epsilon} \rangle} =$	ϵ	0	 1	
	:	:	 :	
$\overline{\langle M_{\overline{d}} \rangle} =$	W	0	 ?	
	:	:	 :	٠

Contradiction:

 $M_{\overline{d}}$ accepte $w \implies w \notin L_{\overline{d}} \implies M_{\overline{d}}$ n'accepte pas $L_{\overline{d}}$ $M_{\overline{d}}$ n'accepte pas $w \implies w \in L_{\overline{d}} \implies M_{\overline{d}}$ n'accepte pas $L_{\overline{d}}$

$L_{\overline{d}}$ n'est accepté par aucune MT



Plan:

- **1** Il existe un langage $L_{\overline{d}}$ ∉ RE ✓
- 2 Il existe un langage $L_u \in RE$ mais $L_u \notin R$

Un langage qui est RE mais pas R

Théorème

Il existe un langage L_u qui **n'est décidé par aucune** machine de Turing

$$L_u = \{\langle M, w \rangle \mid M \text{ accepte } w\}$$

 $NB : \langle M, w \rangle$ est un encodage binaire de l'entrée (M, w)

Exemple: " $\langle M \rangle$ 0 w" si $\langle M \rangle$ se termine par au moins trois 1

L_{II} est RE

Théorème

Le langage $L_u = \{ \langle M, w \rangle \mid M \text{ accepte } w \}$ est récursivement énumérable (accepté par une MT)

Preuve

Théorème

Le langage $L_u = \{\langle M, w \rangle \mid M \text{ accepte } w\}$ n'est pas récursif (décidable)

Théorème

Le langage $L_u = \{\langle M, w \rangle \mid M \text{ accepte } w\}$ n'est pas récursif (décidable)

Preuve

Supposons L_U décidé par MT M_u

Théorème

Le langage $L_u = \{\langle M, w \rangle \mid M \text{ accepte } w\}$ n'est pas récursif (décidable)

Preuve

- Supposons L_U décidé par MT M_u
- Soit D la machine qui sur entrée $\alpha \in \{0,1\}^*$:
 - **1** exécute M_u sur $\langle M_\alpha, \alpha \rangle$ NB : termine!
 - 2 accepte si M_u rejette, et rejette si M_u accepte

NB: *D* accepte $\alpha \iff M_u$ rejette $\langle M_\alpha, \alpha \rangle$

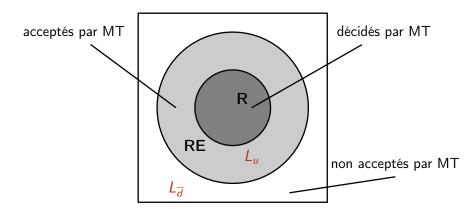
Théorème

Le langage $L_u = \{\langle M, w \rangle \mid M \text{ accepte } w\}$ n'est pas récursif (décidable)

Preuve

- Supposons L_U décidé par MT M_u
- Soit D la machine qui sur entrée $\alpha \in \{0,1\}^*$:
 - **1** exécute M_u sur $\langle M_\alpha, \alpha \rangle$ NB : termine!
 - 2 accepte si M_u rejette, et rejette si M_u accepte
 - **NB** : *D* accepte $\alpha \iff M_u$ rejette $\langle M_\alpha, \alpha \rangle$
- Contradiction :
- D accepte $\langle D \rangle \implies M_u$ rejette $\langle D, \langle D \rangle \rangle \implies D$ n'accepte pas $\langle D \rangle$
- D rejette $\langle D \rangle \implies M_U$ accepte $\langle D, \langle D \rangle \rangle \implies D$ accepte $\langle D \rangle$

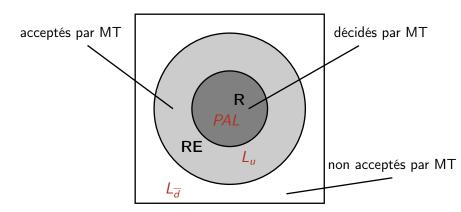
L_u n'est décidé par aucune MT



Plan:

- **1** Il existe un langage $L_{\overline{d}}$ ∉ RE ✓
- 2 Il existe un langage $L_u \in RE$ mais $L_u \notin R \checkmark$

L_u n'est décidé par aucune MT



Plan:

- **1** Il existe un langage $L_{\overline{d}}$ ∉ RE ✓
- 2 Il existe un langage $L_u \in RE$ mais $L_u \notin R \checkmark$

Quelques problèmes indécidables

Équations Diophantiennes (IIIème s.)

$$P(x_1,x_2,\ldots,x_n)=0$$

- P polynôme à coefficients entiers
- On cherche des solutions entières

Équations Diophantiennes (IIIème s.)

$$P(x_1,x_2,\ldots,x_n)=0$$

- P polynôme à coefficients entiers
- On cherche des solutions entières

Exemples:

- aX + bY = 1
- $W^3 + X^3 = Y^3 + Z^3$ solution $12^3 + 1^3 = 9^3 + 10^3 = 1729$
- $X^n + Y^n = Z^n$ pas de solution X, Y, Z > 0 pour $n \ge 3$ (Fermat)

10ème Problème de Hilbert (1900)

Problème de décision DIOPHANTE

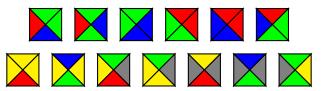
- ENTRÉE : $P(X_1, ..., X_n)$ polynôme à coefficients entiers
- SORTIE : $\begin{cases} 1 & \text{si } P(X_1, \dots, X_n) \text{ admet une solution entière} \\ 0 & \text{sinon} \end{cases}$

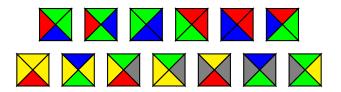
10ème Problème de Hilbert (1900)

Problème de décision DIOPHANTE

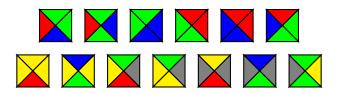
- ENTRÉE : $P(X_1, ..., X_n)$ polynôme à coefficients entiers
- **SORTIE** : $\begin{cases} 1 & \text{si } P(X_1, \dots, X_n) \text{ admet une solution entière} \\ 0 & \text{sinon} \end{cases}$

Théorème (Matiyasevich 1970) DIOPHANTE est indécidable

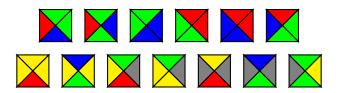




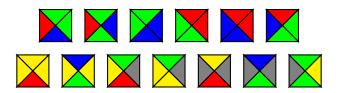
Pavage : rotations interdites, bords adjacents de même couleur



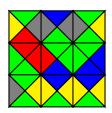
Pavage : rotations interdites, bords adjacents de même couleur

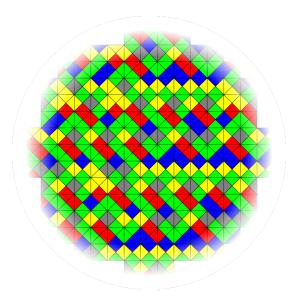


Pavage : rotations interdites, bords adjacents de même couleur



Pavage : rotations interdites, bords adjacents de même couleur





Problème de decision WANG

- ENTREE : ensemble fini S de carreaux
- SORTIE :

```
 \begin{cases} 1 & \text{s'il existe un pavage du plan avec } S \\ 0 & \text{sinon} \end{cases}
```

Problème de decision WANG

- **ENTREE** : ensemble fini *S* de carreaux
- SORTIE:

```
 \left\{ \begin{array}{ll} 1 & \text{s'il existe un pavage du plan avec } S \\ 0 & \text{sinon} \end{array} \right.
```

Théorème (Berger 1966)

Le problème WANG est indécidable

Problème de decision WANG

- **ENTREE** : ensemble fini *S* de carreaux
- SORTIE :

```
 \begin{cases} 1 & \text{s'il existe un pavage du plan avec } S \\ 0 & \text{sinon} \end{cases}
```

Théorème (Berger 1966)

Le problème WANG est indécidable

Mais il existe des pavages apériodiques du plan par carreaux de Wang

Un ensemble fini de dominos :

10	00	01
1	000	1

Problème de correspondance :

- Les mots en haut et en bas doivent correspondre
- Chaque domino peut être joué autant de fois que l'on veut

Un ensemble fini de dominos :

Problème de correspondance :

- Les mots en haut et en bas doivent correspondre
- Chaque domino peut être joué autant de fois que l'on veut

10	00	01	
1	000	1	^

Un ensemble fini de dominos :

Problème de correspondance :

- Les mots en haut et en bas doivent correspondre
- Chaque domino peut être joué autant de fois que l'on veut

10	00	01	_
1	000	1	^

10	00	00	01] ,
1	000	000	1	V

Un ensemble fini de dominos :

Problème de correspondance :

- Les mots en haut et en bas doivent correspondre
- Chaque domino peut être joué autant de fois que l'on veut

10	00	01	
1	000	1	^

10	00	00	01	/
1	000	000	1	V

00	01	/
000	1	V

Problème de decision PCP

- **ENTREE** : ensemble fini *D* de dominos
- SORTIE :
 - $\begin{cases} 1 & \text{s'il existe une correspondance avec } D \\ 0 & \text{sinon} \end{cases}$

Problème de decision PCP

- ENTREE : ensemble fini D de dominos
- SORTIE :

```
 \left\{ \begin{array}{ll} 1 & \text{s'il existe une correspondance avec } D \\ 0 & \text{sinon} \end{array} \right.
```

Théorème (Post 1946)

Le problème POST est indécidable

Problème de decision PCP

- ENTREE : ensemble fini D de dominos
- SORTIE :

```
\begin{cases} 1 & \text{s'il existe une correspondance avec } D \\ 0 & \text{sinon} \end{cases}
```

Théorème (Post 1946)

Le problème POST est indécidable

cf. TD