IF228 - Calculabilité et Complexité

Cours #5 : complexité : P, NP, EXPTIME

Frédéric Herbreteau frederic.herbreteau@bordeaux-inp.fr (d'après les supports de Corentin Travers)

18 février 2025

SORTED-SEARCH

ENTRÉE: un tableau T trié, un entier x **QUESTION**: x est-il un élément de T?

```
1 | 3 | 8 | 9 | 11 | 23 | 45 | 78 | 82 | 93 | 107 | 234
```

• Peut-on décider $x \in T$ en temps linéaire $\mathcal{O}(|T|)$?

SORTED-SEARCH

ENTRÉE : un tableau T trié, un entier x **QUESTION** : x est-il un élément de T?

```
1 | 3 | 8 | 9 | 11 | 23 | 45 | 78 | 82 | 93 | 107 | 234
```

- Peut-on décider $x \in T$ en temps linéaire $\mathcal{O}(|T|)$?
 - → Oui : recherche linéaire

SORTED-SEARCH

ENTRÉE: un tableau T trié, un entier x **QUESTION**: x est-il un élément de T?

```
1 | 3 | 8 | 9 | 11 | 23 | 45 | 78 | 82 | 93 | 107 | 234
```

- Peut-on décider $x \in T$ en temps linéaire $\mathcal{O}(|T|)$? $\rightarrow Oui$: recherche linéaire
- Existe-t-il un algorithme plus efficace?

SORTED-SEARCH

ENTRÉE: un tableau T trié, un entier x **QUESTION**: x est-il un élément de T?

```
1 3 8 9 11 23 45 78 82 93 107 234
```

- Peut-on décider $x \in T$ en temps linéaire $\mathcal{O}(|T|)$?
 - → Oui : recherche linéaire
- Existe-t-il un algorithme plus efficace?
 - → Oui : recherche dichotomique

SORTED-SEARCH

ENTRÉE: un tableau T trié, un entier x **QUESTION**: x est-il un élément de T?

```
1 3 8 9 11 23 45 78 82 93 107 234
```

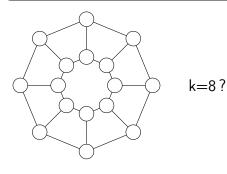
- Peut-on décider $x \in T$ en temps linéaire $\mathcal{O}(|T|)$?
 - → Oui : recherche linéaire
- Existe-t-il un algorithme plus efficace?
 - → Oui : recherche dichotomique

Gain exponentiel : $\mathcal{O}(\log_2(|T|))$ au lieu de $\mathcal{O}(|T|)$

IND-SET

ENTRÉE: un graphe G et un entier $k \in \mathbb{N}$

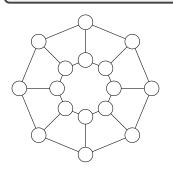
QUESTION : G admet-il un ensemble indépendant de taille k?



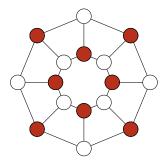
IND-SET

ENTRÉE: un graphe G et un entier $k \in \mathbb{N}$

QUESTION : G admet-il un ensemble indépendant de taille k?



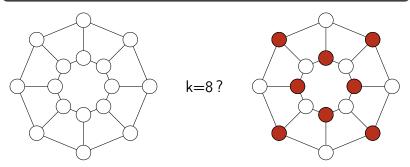
k=8?



IND-SET

ENTRÉE: un graphe G et un entier $k \in \mathbb{N}$

QUESTION: G admet-il un ensemble indépendant de taille k?

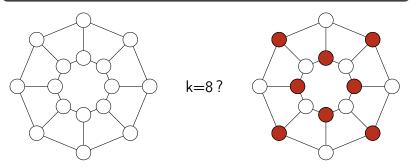


• Algorithme **brute-force** en n!/k!(n-k)! pour n sommets

IND-SET

ENTRÉE: un graphe G et un entier $k \in \mathbb{N}$

QUESTION: G admet-il un ensemble indépendant de taille k?



- Algorithme **brute-force** en n!/k!(n-k)! pour n sommets
- Solution polynomiale en la taille de *G* ?

DIVIDE

ENTRÉE : deux entiers $x,y\in\mathbb{N}$ et $y\neq 0$

QUESTION: est-ce que y divise x?

DIVIDE

ENTRÉE: deux entiers $x, y \in \mathbb{N}$ et $y \neq 0$ **QUESTION**: est-ce que y divise x?

Ex:

1458 | 6

DIVIDE

ENTRÉE: deux entiers $x, y \in \mathbb{N}$ et $y \neq 0$

QUESTION: est-ce que y divise x?

Ex:

1458 | 6

DIVIDE

ENTRÉE : deux entiers $x,y\in\mathbb{N}$ et $y\neq 0$

QUESTION: est-ce que y divise x?

Ex:

1458 | 6

137 | 6

Algorithme **polynomial** : $\mathcal{O}(\max(|x|,|y|)^2)$

L5

Nombres premiers

PRIME

ENTRÉE: un entier $x \in \mathbb{N}$ **QUESTION**: x est-il premier?

Ex: 879 190 747 est-il premier?

Nombres premiers

PRIME

ENTRÉE: un entier $x \in \mathbb{N}$ **QUESTION**: x est-il premier?

Ex: 879 190 747 est-il premier?

• Algorithme **brute-force** en $\mathcal{O}(10^{|x|})$ pour chaque n entre 2 et x-1 tester si n divise x

Nombres premiers

PRIME

ENTRÉE: un entier $x \in \mathbb{N}$ **QUESTION**: x est-il premier?

Ex: 879 190 747 est-il premier?

• Algorithme **brute-force** en $\mathcal{O}(10^{|x|})$ pour chaque n entre 2 et x-1 tester si n divise x

• Solution polynomiale en la taille de x?

Rappels

Fonctions, langages, problèmes

Calculabilité de la fonction booléenne : $f: \{0,1\}^* \rightarrow \{0,1\}$

Décidabilité du langage : $L_f = \{x \in \{0,1\}^* \mid f(x) = 1\}$

Problème de **décision** :

ENTRÉE: $x \in \{0,1\}^*$ **QUESTION**: est-ce que $x \in L_f$?

Temps de calcul

Soit $f: \{0,1\}^* \to \{0,1\}$ et $T: \mathbb{N} \to \mathbb{N}$ deux fonctions, et M une MT qui s'arrête pour tout mot d'entrée.

Temps de calcul

Soit $f: \{0,1\}^* \to \{0,1\}$ et $T: \mathbb{N} \to \mathbb{N}$ deux fonctions, et M une MT qui s'arrête pour tout mot d'entrée.

Définition

M calcule f (ou décide le langage L_f) en temps T ssi :

- M calcule f
- et pour tout $x \in \{0,1\}^*$, M s'arrête sur l'entrée x après avoir effectué au plus T(|x|) transitions.

Temps de calcul

Soit $f: \{0,1\}^* \to \{0,1\}$ et $T: \mathbb{N} \to \mathbb{N}$ deux fonctions, et M une MT qui s'arrête pour tout mot d'entrée.

Définition

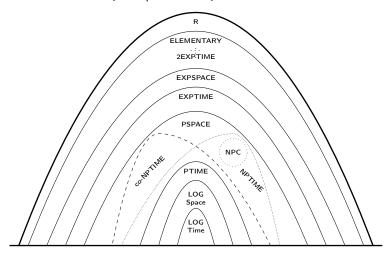
M calcule f (ou décide le langage L_f) en temps T ssi :

- M calcule f
- et pour tout $x \in \{0,1\}^*$, M s'arrête sur l'entrée x après avoir effectué au plus T(|x|) transitions.

NB: complexité au pire

Classes de complexité

Ensemble des fonctions calculables avec des ressources limitées en temps et/ou en espace



Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{DTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{DTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Exemple:

• DTIME(n²) : langages décidables en temps quadratique

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{DTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Exemple:

- $DTIME(n^2)$: langages décidables en temps quadratique
- DTIME(2ⁿ) : langages décidables en temps exponentiel

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{DTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Exemple:

- $DTIME(n^2)$: langages décidables en temps quadratique
- DTIME(2ⁿ) : langages décidables en temps exponentiel
- $DTIME(log_2(n))$: langages décidables en temps log.

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{DTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Exemple:

- $DTIME(n^2)$: langages décidables en temps quadratique
- DTIME(2ⁿ) : langages décidables en temps exponentiel
- $DTIME(log_2(n))$: langages décidables en temps log.

$$DTIME(\log_2(n)) \subseteq DTIME(n^2) \subseteq DTIME(2^n)$$

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe DTIME(T) si et seulement si L est décidé par une MT déterministe en temps $c \cdot T$, où c > 0 est une constante.

Exemple:

- DTIME(n²) : langages décidables en temps quadratique
- DTIME(2ⁿ): langages décidables en temps exponentiel
- DTIME(log₂(n)): langages décidables en temps log.

$$DTIME(\log_2(n)) \subseteq DTIME(n^2) \subseteq DTIME(2^n)$$

NB : machine de Turing est déterministe

$${\sf P} = \bigcup_{c \geq 1} {\sf DTIME}(n^c)$$

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

Exemple:

	∈ P?
SORTED-SEARCH	
PRIME	
DIVIDE	
IND-SET	

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

Exemple:

	∈ P?	
SORTED-SEARCH	oui	parcours linéaire/dichotomique
PRIME		
DIVIDE		
IND-SET		

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

Exemple:

	∈ P?	
SORTED-SEARCH	oui	parcours linéaire/dichotomique
PRIME	oui	Agrawal-Kayal-Saxena 2002
DIVIDE		
IND-SET		

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

Exemple:

	∈ P?	
SORTED-SEARCH	oui	parcours linéaire/dichotomique
PRIME	oui	Agrawal-Kayal-Saxena 2002
DIVIDE	oui	cf. CM1
IND-SET		

La classe P ou PTIME

$$\mathsf{P} = \bigcup_{c>1} \mathsf{DTIME}(n^c)$$

Classe des langages décidables en **temps polynomial** par une MT **déterministe**

Exemple:

	∈ P?	
SORTED-SEARCH	oui	parcours linéaire/dichotomique
PRIME	oui	Agrawal-Kayal-Saxena 2002
DIVIDE	oui	cf. CM1
IND-SET	???	

$$\mathsf{EXPTIME} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

 $NB : P \subseteq EXPTIME$

$$\mathsf{EXPTIME} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

NB : P ⊂ EXPTIME

Exemple: les problèmes SORTED-SEARCH, PRIME, DIVIDE et IND-SET sont dans la classe **EXPTIME**

$$\mathsf{EXPTIME} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

NB : P ⊂ EXPTIME

Exemple: les problèmes SORTED-SEARCH, PRIME, DIVIDE et IND-SET sont dans la classe **EXPTIME**

 Intuition : les algorithmes pour les problèmes de P passent à l'échelle mieux que ceux de EXPTIME

$$\mathsf{EXPTIME} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

 $NB : P \subseteq EXPTIME$

Exemple: les problèmes SORTED-SEARCH, PRIME, DIVIDE et IND-SET sont dans la classe **EXPTIME**

Intuition: les algorithmes pour les problèmes de P
passent à l'échelle mieux que ceux de EXPTIME

→ à relativiser (exemple: n¹⁰⁰)

$$\mathsf{EXPTIME} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

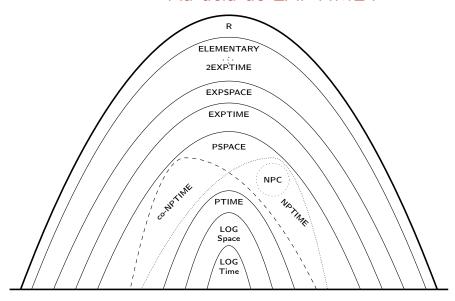
NB : P ⊂ EXPTIME

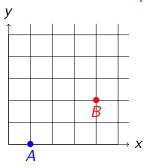
Exemple: les problèmes SORTED-SEARCH, PRIME, DIVIDE et IND-SET sont dans la classe **EXPTIME**

- Intuition: les algorithmes pour les problèmes de P
 passent à l'échelle mieux que ceux de EXPTIME

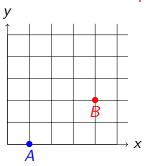
 → à relativiser (exemple: n¹⁰⁰)
- Une approche brute-force donne très souvent un algorithme en temps exponentiel

Au-delà de EXPTIME?



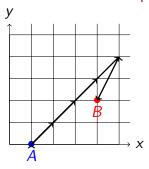


Chemin de A à B?



Chemin de A à B?

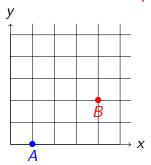
$$V = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$$



Chemin de A à B?

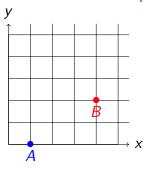
$$V = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$$

$$\rightarrow$$
 oui : $B = A+4v_1+v_2$



Chemin de A à B?

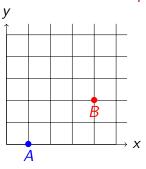
$$V = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$$



Chemin de A à B?

$$V = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$$

 \rightarrow **non** (tous les points accessibles ont $x \le 1$)



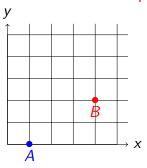
Chemin de A à B?

$$V = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$$

 \rightarrow **non** (tous les points accessibles ont $x \le 1$)

VAS-REACH : accessibilité VAS/Réseaux de Petri

ENTRÉE: $V \subseteq \mathbb{Z}^n$ ens. fini de vecteurs et deux points $A, B \in \mathbb{N}^n$ **QUESTION**: existe-t-il une séquence finie $w \in V^*$ tq B = A + w?



Chemin de A à B?

$$V = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$$

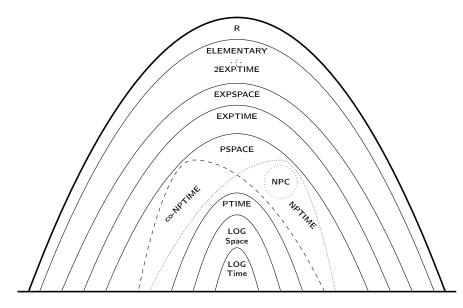
 \rightarrow **non** (tous les points accessibles ont $x \le 1$)

VAS-REACH : accessibilité VAS/Réseaux de Petri

ENTRÉE: $V \subseteq \mathbb{Z}^n$ ens. fini de vecteurs et deux points $A, B \in \mathbb{N}^n$ **QUESTION**: existe-t-il une séquence finie $w \in V^*$ tq B = A + w?

VAS-REACH est non-élémentaire et même non primitif récursif pour $n \ge 10$ (Leroux/Czerwiński&Orlikowski, 2021)

Entre P et EXPTIME?



La classe NP

Sudoku : problème de décision

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

SUDOKU

ENTRÉE: une grille G de taille n, partiellement remplie **QUESTION**: G peut-elle complétée de façon valide?

Sudoku : problème de décision

5	თ			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ო	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	В	7	9	1
7	1	3	တ	2	4	80	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

SUDOKU

ENTRÉE: une grille G de taille n, partiellement remplie **QUESTION**: G peut-elle complétée de façon valide?

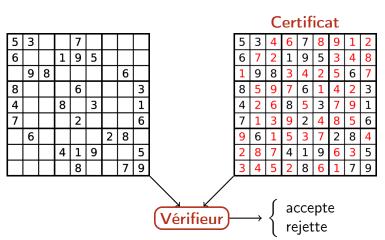
Sudoku: vérification

Comment **vérifier** qu'une grille partielle est complétée de façon valide?

5	3			7						5	3	4	6	7	8	9	1	2
6			1	9	5					6	7	2	1	9	5	3	4	8
	9	8					6			1	9	8	3	4	2	5	6	7
8				6				3		8	5	9	7	6	1	4	2	3
4			8		3			1		4	2	6	8	5	3	7	9	1
7				2				6		7	1	3	9	2	4	8	5	6
	6					2	8			9	6	1	5	3	7	2	8	4
			4	1	9			5		2	8	7	4	1	9	6	3	5
				8			7	9		ო	4	5	2	8	6	1	7	9
									(Vérifieur)			ſ	ac	cce	pt te	e		

Sudoku: vérification

Comment **vérifier** qu'une grille partielle est complétée de façon valide?



Vérifieur

Soit L un langage sur l'alphabet $\{0,1\}$

Définition

Un **vérifieur** pour L est une MT déterministe V qui s'arrête pour toute entrée $\langle w, c \rangle$ et telle que :

- si $w \in L$ alors $\exists c \in \{0,1\}^*$ tq V accepte $\langle w,c \rangle$
- et si $w \notin L$ alors $\forall c \in \{0,1\}^*$, V rejette $\langle w, c \rangle$

 $\mathsf{NB}: L = \{w \mid V \; \mathsf{accepte} \; \langle w, c
angle \; \mathsf{pour} \; \mathsf{un} \; \mathsf{certain} \; c \in \{0, 1\}^*\}$

Vérifieur

Soit L un langage sur l'alphabet $\{0, 1\}$

Définition

Un **vérifieur** pour L est une MT déterministe V qui s'arrête pour toute entrée $\langle w, c \rangle$ et telle que :

- si $w \in L$ alors $\exists c \in \{0,1\}^*$ tq V accepte $\langle w,c \rangle$
- et si $w \notin L$ alors $\forall c \in \{0,1\}^*$, V rejette $\langle w, c \rangle$

 $\mathsf{NB}: L = \{w \mid V \text{ accepte } \langle w, c \rangle \text{ pour un certain } c \in \{0,1\}^*\}$

Un **vérifieur polynomial** est un vérifieur qui s'exécute en temps polynomial en la taille de *w*

 \rightarrow cela entraîne que c est de taille polynomiale en |w|

SUDOK<u>U</u>

ENTRÉE : une grille *G* de taille *n*, partiellement remplie **QUESTION** : *G* peut-elle complétée de façon valide?

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

 $SUDOKU = \{ \langle G \rangle \mid G \text{ admet un remplissage valide} \}$

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

 $SUDOKU = \{\langle G \rangle \mid G \text{ admet un remplissage valide}\}$

Vérifieur : sur entrée $\langle G, c \rangle$

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

$$SUDOKU = \{\langle G \rangle \mid G \text{ admet un remplissage valide}\}$$

Vérifieur : sur entrée $\langle G, c \rangle$

• vérifie que c encode une grille $n \times n$

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

 $SUDOKU = \{\langle G \rangle \mid G \text{ admet un remplissage valide}\}$

Vérifieur : sur entrée $\langle G, c \rangle$

- vérifie que c encode une grille $n \times n$
- qui respecte le remplissage partiel de G

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

 $SUDOKU = \{\langle G \rangle \mid G \text{ admet un remplissage valide}\}$

Vérifieur : sur entrée $\langle G, c \rangle$

- vérifie que c encode une grille $n \times n$
- qui respecte le remplissage partiel de G
- qui respecte les contraintes d'unicité

SUDOKU

ENTRÉE : une grille G de taille n, partiellement remplie **QUESTION** : G peut-elle complétée de façon valide ?

 $SUDOKU = \{ \langle G \rangle \mid G \text{ admet un remplissage valide} \}$

Vérifieur : sur entrée $\langle G, c \rangle$

- vérifie que c encode une grille $n \times n$
- qui respecte le remplissage partiel de G
- qui respecte les contraintes d'unicité
- → en temps polynomial

La classe NP ou NPTIME

NP = classe des langages qui admettent un vérifieur polynomial

Exemple: SUDOKU est dans NP

La classe NP ou NPTIME

NP = classe des langages qui admettent un vérifieur polynomial

Exemple: SUDOKU est dans NP

VS.

P = classe des langages décidés par une MT déterministe en temps polynomial

IND-SET est dans NP

IND-SET

ENTRÉE: un graphe G et un entier $k \in \mathbb{N}$

QUESTION: G admet-il un ensemble indépendant de taille k?

Lemme

IND-SET est dans NP

Preuve:

P vs. NP vs. EXPTIME

Théorème

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{EXPTIME}$

Preuve:

P vs. NP vs. EXPTIME

Théorème

 $P \subset NP \subset EXPTIME$

Preuve:

- P \subseteq NP. Soit $L \in P$:
 - \rightarrow il existe une MT M qui décide L en **temps** polynomial.
 - \rightarrow prendre M avec certificat ϵ comme vérifieur pour L.

P vs. NP vs. EXPTIME

Théorème

 $P \subset NP \subset EXPTIME$

Preuve:

- P \subseteq NP. Soit $L \in P$:
 - \rightarrow il existe une MT M qui décide L en **temps** polynomial.
 - \rightarrow prendre M avec certificat ϵ comme vérifieur pour L.
- NP \subseteq EXPTIME. Soit $L \in NP$:
 - ightarrow il existe un vérifieur polynomial V tq pour tout mot
 - $w \in L$, V accepte $\langle w, c \rangle$ pour un certain certificat c
 - $ightarrow |c| \le p(|w|)$ pour un certain polynôme p
 - \rightarrow on construit une MT M qui, sur entrée w, énumère les certificats c de taille $\leq p(|w|)$, et exécute V sur $\langle w, c \rangle$
 - $\rightarrow M$ décide L en temps $2^{\mathcal{O}(p(|w|))}$

P vs. NP vs. EXPTIME (2)

On ne sait pas si:

- P = NP ou $P \neq NP$
- NP = EXPTIME ou NP ≠ EXPTIME

On sait que:

P ≠ EXPTIME

(cf. théorème de la hiérarchie temporelle)

NP = Non-déterministe Polynomial

MT non-déterministe

Une configuration peut avoir plusieurs successeurs :

$$\delta \subseteq Q \times \Sigma^k \times Q \times \Sigma^k \times \{L, R, S\}^k$$

est une relation

Ex:



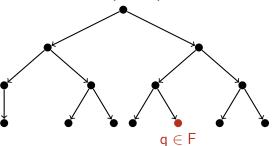
Calcul non-déterministe

L'exécution d'une *M* non-déterministe sur un mot *w* produit un arbre.

Calcul non-déterministe

L'exécution d'une *M* **non-déterministe** sur un mot *w* produit un **arbre**.

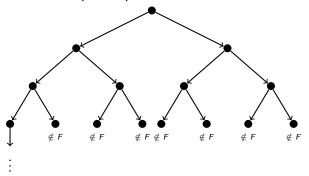
 M accepte w si elle s'arrête et une branche de l'arbre aboutit dans un état acceptant q ∈ F



Calcul non-déterministe

L'exécution d'une *M* **non-déterministe** sur un mot *w* produit un **arbre**.

- M accepte w si elle s'arrête et une branche de l'arbre aboutit dans un état acceptant q ∈ F
- M n'accepte pas w si aucune branche de l'arbre aboutit dans un état acceptant q ∈ F

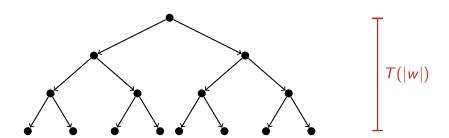


Temps de calcul

Soit M une MT non-déterministe qui s'arrête pour tout mot d'entrée, et $T: \mathbb{N} \to \mathbb{N}$ une fonction.

Définition

M s'exécute en temps T si pour tout mot $w \in \{0, 1\}^*$, l'arbre d'exécution de M sur w est de hauteur au plus T(|w|).



NTIME

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{NTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT non-déterministe en temps $c \cdot T$, pour une constante c > 0.

NTIME

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{NTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT non-déterministe en temps $c \cdot T$, pour une constante c > 0.

Exemple:

 $NTIME(n^2)$: langages décidables en temps quadratique non-déterministe

NTIME

Définition

Soit $T: \mathbb{N} \to \mathbb{N}$ une fonction. Un langage L est dans la classe $\mathsf{NTIME}(\mathsf{T})$ si et seulement si L est décidé par une MT non-déterministe en temps $c \cdot T$, pour une constante c > 0.

Exemple:

 $NTIME(n^2)$: langages décidables en temps quadratique non-déterministe

NB : machine de Turing est non-déterministe

NP = non-déterministe polynomial

Théorème $NP = \bigcup_{c>0} NTIME(n^c)$

Preuve:

NP = non-déterministe polynomial

```
Théorème NP = \bigcup_{c>0} NTIME(n^c)
```

Preuve:

- $\bigcup_{c\geq 0} NTIME(n^c) \subseteq NP$ Soit $L \in \bigcup_{c\geq 0} NTIME(n^c)$ décidé par M_L . Sur entrée $\langle w, c \rangle$:
 - \rightarrow certificat c = séquence de choix non-déterministes
 - \rightarrow vérifieur polynomial simule M_L sur w, guidé par c

NP = non-déterministe polynomial

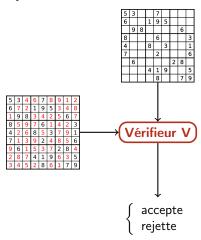
Théorème $NP = \bigcup_{c>0} NTIME(n^c)$

Preuve:

- $\bigcup_{c\geq 0} NTIME(n^c) \subseteq NP$ Soit $L \in \bigcup_{c\geq 0} NTIME(n^c)$ décidé par M_L . Sur entrée $\langle w,c \rangle$:
 - \rightarrow certificat c = séquence de choix non-déterministes
 - \rightarrow vérifieur polynomial simule M_I sur w, guidé par c
- $NP \subseteq \bigcup_{c>0} NTIME(n^c)$ Soit $L \in NP$ et V un vérifieur polynomial pour L. Sur entrée w:
 - $\rightarrow M$ devine un certificat c avec le non-déterminisme
 - \rightarrow puis elle simule V sur $\langle w, c \rangle$

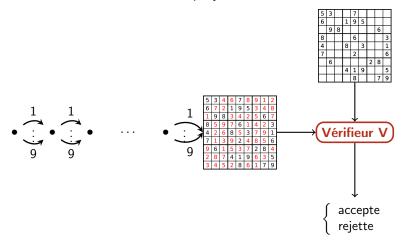
SUDOKU en temps poly. non-dét.

 $SUDOKU \in NP$: vérificateur polynomial déterministe V



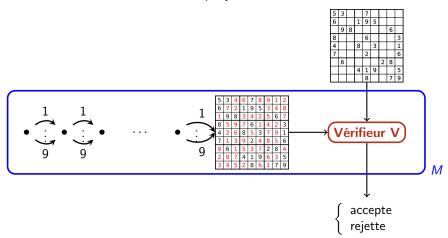
SUDOKU en temps poly. non-dét.

 $SUDOKU \in NP$: vérificateur polynomial déterministe V



SUDOKU en temps poly. non-dét.

 $SUDOKU \in NP$: vérificateur polynomial déterministe V



M décide SUDOKU en temps polynomial non-déterministe